Precision XY Motion Platform

FEATURES

- Compact Low-Profile Design
- 100 mm XY Travel
- Zero backlash, precision ground
ball screws
- Optical limit switches with home
- High resolution rotary encoder

- Brushless servo motor drive
- Crossed Roller Bearings

The CXY-BS series stages are designed for a variety of applications. This compact low profile ball screw stage is built for high duty cycles and long life and can attain high velocities for factory automation and semiconductor processing equipment. The CXY series offers extraordinary levels of orthogonality and parallelism resulting in high accuracy for combined axis motion. Recirculating ball linear ways and precision ground ball screws offer extremely smooth operation and velocity control. The XY stage can operate in any orientation and has optional brakes for added safety.

Product Specifications

Encoder Output	A quad B, index
Force X/Y, Continuous (N)	165
Force X/Y, Peak (N)	330
Force Z (N)	400
Flatness ($\mu \mathrm{m}$)	5
Height (mm)	66
Length (mm)	320
Limit Switches	Yes
Linear Accuracy, Calibrated ($\mu \mathrm{m}$)	4^{*}
Linear Accuracy, Mechanical ($\mu \mathrm{m}$)	15
Linear Encoder Resolution ($\mu \mathrm{m})$	0.125
Linear Repeatability ($\mu \mathrm{m})$	2
Linear Velocity (mm/s)	140
Moment X (N•m)	80
Moment Y (N•m)	80
Moment Z (N.m)	50
Moving Mass X (kg)	5.88
Moving Mass Y (kg)	2.32
Orthogonality (arc-sec)	10
Pitch +/- (arc-sec)	12
Screw Lead (mm)	2
Stage Mass (kg)	9.35
Straigtness ($\mu \mathrm{m}$)	5
Width (mm)	265
Yaw +/- (arc-sec)	6
*Subject to control configuration	

LOAD DIRECTIONS

Part Number Description

CXY	CXY Series
C	No Aperture
100	100 mm Travel
BS	Ball Screw Drive
A	Brushless Servo Motor
H	$0.125 \mu \mathrm{~m}$ Rotary
S	Standard Precision
0	No Additional Options
00	Standard Product (Call for custom)

Feed (DSL	
PIN	NAME
1	+5Vdc
2	A+
3	B+
4	$\mathrm{Rl}+$
5	LIM+
6	*
7	*
8	*
9	*
10	*
11	A-
12	B-
13	RI-
14	LIM-
15	*
16	*
17	*
18	*
19	GND
20	HALL A
21	HALL B
22	HALL C
23	HOME
24	*
25	*
26	*
*Reserved	

Motor Connector (DSUB9 MALE)	
PIN	NAME
1	PE
2	${ }^{*}$
3	${ }^{*}$
4	*
5	*
6	PHASE A
7	PHASE B
8	PHASE C
9	*
*Reserved	

CXY-C-100-BS-A-H-S-0-00

Motor Specifications	
Motor Type	3 phase brushless DC
BEMF Output (V/Krpm)	2.57
Electrical Time Constant (msec)	0.38
Bus Voltage (Vdc)	24 nominal (100 max)
Max Continuous Current (Apk)	3.36
Motor Force Constant (Nm/Apk)	0.0216
Peak Current (Apk)	6.73
Pin to Pin Inductance (mH)	0.55
Pin to Pin Resistance (ohm)	1.51
Poles Per Revolution	6

Feedback Specifications		
Supply Voltage (Vdc)	$5.0 \pm 10 \%$	
Supply Current (mA)	250	
Encoder Feedback	Yes	
Encoder Type	Incremental	
Encoder Output	Square Wave Quadrature, RS-422 compatible,	
A,B,Z, Differential Pair		
Encoder Resolution	8000 cts/mm	
Hall Switches	Yes	
Hall Switch Output Type	Open-collector, no internal pullup resistor	
Hall Switch max current (mA)	-20	
Limit Switches	Yes	
Limits Switch Output Type	CMOS	
Limit Switch Output current (mA)	± 20.0	
Home Switch	Yes	
Home Switch Output Type	CMOS	
Home Switch Output Current (mA)	± 20.0	

A home switch is provided near the center of mechanical travel, and a limit switch at each end of travel. The encoder will output one index pulse per revolution of the motor. The index pulse is highly repeatable and can be used in coordination with the home switch to find an absolute position after power-up.

The limit switches will be pulled low throughout the travel range of the stage. The output will swing high at the end of travel and remain high until the mechanical limit of the stage is reached.

